Electrical Accessories Low-Voltage Switching Components

Application

Low-Voltage Remote Control
Products consist of reliable, field-tested switching circuitry that provide central or local control of lighting loads throughout a building. These are best applied in institutions, schools, commercial buildings, warehouses and other installations where the ON-OFF switching of lighting is widely dispersed throughout the structures.

Important:

Low-Voltage Switching Components are specifically designed for switching incandescent and fluorescent lighting (non-HID) loads.

Low-Voltage Switching Components are not to be used with any components supplied by other manufacturers. Mis-application or improper use may void product warranties.

The ABCs of Low-Voltage Wiring and Components

The low-voltage system differs from conventional switch wiring by actuating relays through the use of momentary contact switches. This type of switching utilizes a transformer to provide safe lowvoltage current to control line voltage circuits. The wiring of lights and other electrical loads is installed in the conventional manner.

The above illustration simplifies a low-voltage circuit with its basic components:
A. Transformer - Converts line voltage to low-voltage. All lowvoltage components operate using 24 volts furnished by the step-down transformer. Secondary output is 3-12A.
B. Relay - The magnetic relay switches line voltage. A momentary 24 volt pulse energizes the "ON" or "OFF" coils to make or break line voltage contacts.
C. Switches - Switches are momentary contact type used to energize either the "ON" or "OFF" coils of a relay. Momentary contact switches are normally open, single pole, double throw.

All devices listed on this page conform to NEMA WD-1 and WD-6.

All devices listed on this page conform to NEMA WD-1 and WD-6.

Features

- Mount in standard 1/2" KO through noise suppressing nylon ring.
- Maximum ambient temp: $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$.
- Insulated flame retardant nylon shell.
- Prestripped 5-1/2" (140mm) \#22 AWG leads for easy wiring.

Catalog Number	Rating A. V.	3rd Party Compliance	
			CSA Listed
Magnetic Latching Relay, 24V/24VDC Control			
1070-B	$\begin{array}{ll} 20 & 120 / 277 \mathrm{~V} \\ 20 & 347 \mathrm{~V} \end{array}$	-	-

CSA listed for 347 V .

1070-B

Features

- Available in Despard ${ }^{\circledR}$ interchangeable and
- Heavy-duty toggles recommended where heavy-duty toggle versions. low-voltage switches must match conventional
- Side wired screw terminals. switches.

Note: When installing low-voltage control wiring, wires should not be bundled or run in parallel with line voltage wires.

Bun Product Information

Feat				
- 100\% HIPOT tested primary and secondary. - Base fits 4 Screw box. - Built-in overload protection.				
Catalog Number	VA Rating	Primary Volts	Secondary Volts	Secondary Output
Transformers				
$\begin{array}{\|l\|} \hline 1038 \\ 1039 \end{array}$	$\begin{aligned} & 75 \mathrm{VA} \\ & 75 \mathrm{VA} \end{aligned}$	$\begin{aligned} & \hline 120 \mathrm{~V} \\ & 277 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 24 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.12 \mathrm{~A} \\ & 3.12 \mathrm{~A} \end{aligned}$

A 75 VA transformer can drive a maximum of 7 relays simultaneously. However, the length of a wire run as well as the size of the wire itself have an effect on a transformer's output capability.
The following tables will be useful in selecting the proper wire size and length of wire runs.

75VA transformer

(1038 or 1039) switch leg-length of run in feet (2 wires):

No. of Relays in Parallel	\#12 Wire	\#14 Wire	\#16 Wire	\#18 Wire	\#20 Wire	\#22 Wire
1	3000^{\prime}	2000^{\prime}	1200^{\prime}	750^{\prime}	500^{\prime}	300^{\prime}
2	1500^{\prime}	1000^{\prime}	600^{\prime}	375^{\prime}	250^{\prime}	150^{\prime}
3	1000^{\prime}	650^{\prime}	400^{\prime}	250^{\prime}	160^{\prime}	100^{\prime}
4	750^{\prime}	500^{\prime}	300^{\prime}	180^{\prime}	125^{\prime}	75^{\prime}
5	600^{\prime}	400^{\prime}	240^{\prime}	150^{\prime}	100^{\prime}	60^{\prime}
6	500^{\prime}	330^{\prime}	200^{\prime}	125^{\prime}	80^{\prime}	50^{\prime}
7	420^{\prime}	280^{\prime}	170^{\prime}	100^{\prime}	70^{\prime}	40^{\prime}

Notes:

Relays in Parallel - Relays so wired will all be activated by any switch in the circuit. If more than one transformer is used, the load should be divided between transformers.

All devices listed on this page conform to NEMA WD-1 and WD-6.

To learn more about B-I-A please visit us at our WEB site: www.BiaGmbH.com

